AcWing 181.回转游戏

算法思路

该算法基本大体框架同AcWing.180,但是题目中涉及到的8种操作需要一定的处理技巧

八种回转操作

首先可以考虑对八种操作进行硬编码,此处采用顺时针从0到7。然后由于题目中传入的数字序列并非便于操作的方式,我们可以进行一个打表操作,提前确定会被影响到的位置。

1
2
3
4
5
6
7
8
9
        A     B
0 1
2 3
H 4 5 6 7 8 9 10 C
11 12
G 13 14 15 16 17 18 19 D
20 21
22 23
F E

即可以生成一个op数组

1
2
3
4
5
6
7
8
9
10
int op[8][7] = {
{0, 2, 6, 11, 15, 20, 22}, // A
{1, 3, 8, 12, 17 ,21, 23}, // B
{10, 9, 8, 7, 6, 5, 4}, // C
{19, 18, 17, 16, 15, 14, 13}, // D
{23, 21, 17, 12, 8, 3, 1}, // E
{22, 20, 15, 11, 6, 2, 0}, // F
{13, 14, 15, 16, 17, 18, 19}, // G
{4, 5, 6, 7, 8, 9, 10}, // H
};

同样可以生成一个相反操作的数组,防止出现两次相反的操作导致无效操作

1
int opposite = {5, 4, 7, 6, 1, 0, 3, 2};

算法实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
#include <iostream>
#include <algorithm>
#include <cstring>

using namespace std;

const int N = 24;

int op[8][7] = {
{0, 2, 6, 11, 15, 20, 22}, // A
{1, 3, 8, 12, 17 ,21, 23}, // B
{10, 9, 8, 7, 6, 5, 4}, // C
{19, 18, 17, 16, 15, 14, 13}, // D
{23, 21, 17, 12, 8, 3, 1}, // E
{22, 20, 15, 11, 6, 2, 0}, // F
{13, 14, 15, 16, 17, 18, 19}, // G
{4, 5, 6, 7, 8, 9, 10}, // H
};

int oppsite[] = {5, 4, 7, 6, 1, 0, 3, 2};
int center[] = {6, 7, 8, 11, 12, 15, 16, 17};

int n;
int g[N];
int path[100];

int f()
{
static int sum[4];
memset(sum, 0, sizeof sum);

for (int i = 0; i < 8; ++i) sum[g[center[i]]] ++;

int s = 0;
for (int i = 1; i <= 3; ++i) s = max(s, sum[i]);

return 8 - s;
}

void move(int ac)
{
int t = g[op[ac][0]];
for (int i = 0; i < 6; ++i) g[op[ac][i]] = g[op[ac][i + 1]];
g[op[ac][6]] = t;
}

bool dfs(int u, int depth, int last)
{
if (u + f() > depth) return false;
if (f() == 0) return true;

for (int i = 0; i < 8; ++i)
{
if (oppsite[i] != last) // prevent it goes back
{
move(i);
path[u] = i;
if (dfs(u + 1, depth, i)) return true;
move(oppsite[i]);
}
}

return false;
}

int main()
{
while(cin >> g[0], g[0])
{
for (int i = 1; i < N; ++i) cin >> g[i];

int depth = 0;
while(!dfs(0, depth, -1)) depth ++;

if (!depth) cout << "No moves needed";
else
{
for (int i = 0; i < depth; ++i) cout << (char) (path[i] + 'A');
}
cout << '\n' << g[center[0]] << '\n';
}
}

AcWing 181.回转游戏
http://anyin233.github.io/2022/02/06/AcWing-181-回转游戏/
Author
anyin233
Posted on
February 6, 2022
Licensed under