算法思路
考虑到本题的实际操作机制,行内相邻交换不会导致列分布变化、列内交换不会导致行分布变化,根据这点我们可以将本题拆分为分别对行和列做循环交换操作。
假设一个环形结构\([a_1, a_2 ... a_n]\),需要将其中所有的数字通过相邻数字间的交换变为\(a\),假设从\(a_i \to a_{i + 1}\)传递\(x_i\)个数字(\(x_i\)可正可负,且\(a_n\to a_1\)为\(x_n\))则有
\[a_1 + x_n - x_1 = a \\ a_2 + x_1 - x_2 = a \\ ... \\a_n + x_{n - 1} - x_n = a\]
整理得
\[x_1 - x_n = a_1 - a \\ x_2 - x_1 = a_2 - a \\ ... \\ x_n - x_{n - 1} = a_n - a\]
由于希望求得最小的操作次数,即题目希望求得最小的\(|x_1| + |x_2| + ... +|x_n|\)则有
\[x_1 = x_1 \\ x_2 = x_1 - (a - a_2) \\ x_3 = x_2 - (a - a_3) = x_1 - (2a - a_2 - a_3) \\ ... \\ x_n = x_{n - 1} - (a - a_n) = ... = x_1 - ((n - 1)a-a_2-a_3 ... -a_n)\]
即最终上面的式子被转化为了\(|x_1| + |x_1 - (a-a_2)| ...+|x_1 - [(n - 1)a - a_2 - a_3 ... -a_n]|\)最终变为了货仓选址问题。
代码实现
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
| #include <iostream> #include <algorithm>
using namespace std;
const int N = 100010;
int n, m, t; int r[N], c[N];
long long compute(int a[], int avg, int cnt) { int buf[N]; for (int i = 2; i <= cnt; ++i) { buf[i] = avg - a[i] + buf[i - 1]; } sort(buf + 1, buf + cnt + 1); int mid = (1 + cnt) >> 1; long long res = 0; for (int i = 1; i <= cnt; ++i) { res += abs(buf[i] - buf[mid]); } return res; }
int main() { cin >> n >> m >> t; for (int i = 0; i < t; ++i) { int x, y; cin >> x >> y; r[x] ++; c[y] ++; } int col_res = 0, row_res = 0; int col_avg = 0, row_avg = 0; if (t % m && t % n) cout << "impossible"; else if (t % m) { cout << "row "; cout << compute(r, t / n, n); } else if (t % n) { cout << "column "; cout << compute(c, t / m, m); } else { cout << "both "; cout << compute(r, t / n, n) + compute(c, t / m, m); } }
|